

Shri Shankaracharya Technical Campus (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

Scheme of Examination and Syllabus 2020

SCHEME OF TEACHING AND EXAMINATION (Effective from 2020 – 2021 Batch)

M.C.A. Third Semester

SI. N	Board of		Course Code		Period per Week		Scheme of Examination			ΓN	
I 0.	Studies	Courses (Subject)	Course Coue	т	т	D	Theory/Lab		ota [ark	red	
	(BOS)			L	1	ſ	LOL	CI	IA	s	it
1	Computer Applications	Computer Graphics and Image Processing	CA261301	3	1	-	100	20	20	140	4
2	Computer Applications	Cloud Computing	CA261302	3	1	-	100	20	20	140	4
3	Computer Applications	Data Science	CA261303	3	1	-	100	20	20	140	4
4	Computer Applications	Elective- II	Refer Table2	3	1	-	100	20	20	140	4
5	Computer Applications	Elective- III	Refer Table3	3	1	-	100	20	20	140	4
6	Computer Applications	Data Science Lab using python	CA261391	-	-	4	75	-	25	100	2
7	Computer Applications	Android Lab	CA261392	-	-	4	75	-	25	100	2
8	Computer Applications	Minor Project*	CA261393	-	-	4	75	-	25	100	2
9		Report Writing	CA261394	-	-	2	-	-	-	-	-
Тс	otal Marks			15	5	14	725	100	175	1000	26

Abbreviations used: L-Lecture, T-Tutorial, P-Practical, ESE-End Semester Exam, CT- Class Test, TA-Teacher's Assessment.

Note: * Student has to undergo 4 weeks training/certification/internship/online course after the second semester during summer vacation, which would be given weightage in assessments of 3rd semester minor project.

Table2

Code no.	Elective- II (Computer Applications)
CA261341	Formal Language and Automata Theory
CA261342	Neural Network and Fuzzy Logic
CA261343	Internet of Things
CA261344	Analysis and design of Algorithm
CA261345	Parallel Computing

Table3

Code no.	Elective- III (Computer Applications)
CA261346	Natural Language Processing
CA261347	Mobile Computing
CA261348	Compiler Design
CA261349	Software Project Management
CA261350	Block Chain Technology

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261301	Computer Graphics and Image Processing	L = 3	T = 1	P = 0	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
1. To give an understanding of fundamentals	On successful completion of the course, the student will be able
algorithm for output primitive	to:
2. To make students learn what type of operation	
can be applied on graphical object and how they	CO1. Implement the logic of drawing basic output primitive
are applied.	while developing graphical package
3. To give an understanding of surface rendering	CO2 . Apply various concepts of 2D clipping operation on objects
for realistic images for developing graphical	CO3.Students will be able use 3D transformation and
application	understands concepts of curves
4. To give learner an understanding of basic	CO4.Students will be equipped with techniques used in image
Knowledge of image processing for computer	processing
vision.	CO5.Students will have the concept of basic compression
5. To learn principles of compression techniques	techniques for images
for images and video.	
-	

UNIT-I: Fundamentals of Computer Graphics: [CO1]

Concepts and applications, Random and Raster scan devices, input-output devices: CRT, LCD, laser printer. Output primitives: Line drawing algorithm: DDA and Bresenham's; Bresenham's Circle drawing algorithm and Midpoint circle drawing algorithms, Antialiasing techniques: super sampling, pixel weighting, area sampling, pixel phasing.[7hrs]

UNIT-II : Transformation, Viewing, Clipping: [CO2]

2-D Transformation: Translation, scaling, rotation, reflection, shear, matrix representation of all homogeneous coordinates composite transformations. Two-dimensional viewing: Viewing pipeline Window-to viewport transformation. Clipping operations: Line Clipping: Cohen Sutherland, and Liang-Barsky. [7hrs]

UNIT-III 3D Transformation, Visible Surface Detection and Curves: [CO3]

Visible Surface detection Algorithm: Object based and image-based methods, depth comparison, A-Buffer,Depth Sorting Method (Painter's algorithm). Introduction to 3-D Transformation: translation, scaling, rotation, reflection. 3-D Viewing Projections: definition and type of Projections: parallel and perspective projection. Concept and characteristics of Bezier curves and B-Spline curves. **[7hrs]**

UNIT IV Introduction To Image Processing : [CO4]

Origin of Image Processing, Application of Image Processing, fundamentals of Image Processing, components of DIP system, Image formation model, Spatial & Gray level resolution, Image enhancement in special domain: Piecewise transformation functions, Histogram equalization, Histogram specification, image averaging. Spatial filters- smoothing and sharpening, image sampling and quantization.[6 hrs]

UNIT V Image Compression:[CO5]

Data compression: storage space, coding requirements. Source, entropy and hybrid coding. Compression technique: Lossless and Lossy compressions. Lossless Compression Methods : Huffman coding, LZW coding and run length coding, Lossy compressions Methods - JPEG, MPEG.[6hrs]

		October2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code	Computer Graphics and	L = 3	T = 1	P = 0	Credits = 4
CA261301	Image Processing				
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Text Books:

S.	Title	Authors	Edition	Publisher
No.				
1	Computer Graphics	Donald Hearn & M. Pauline Baker	Second	PHI
2	Multimedia Computing communication& applications	Ralf Steimnety & Klara Nahrstedt	Second	Prince Hall
3	Digital Image Processing	S Jayaraman, S. Essakkirajan, T. Veerakumar-	First	ТМН

S. No.	Title	Authors	Edition	Publisher
1.	Principles Of Interactive Compo Graphics	W.M. Newman & Robert F Sproull	Second	Narosa Publishing House
2.	Computer Graphics	Rogers	Fourth	ТМН
3.	Introductions to Computer Graphics	Anirban Mukhopadhyay &Arup Chattopadhyay	Second	Vikas Publication
4.	Schaum's outlines - computer Graphics	Zhigang Xiang , Roy Plastock	Fifth	Mc Graw Hill
5.	Principles of Multimedia	Ranjan Parekh	Second	ТМН

		October2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261302	Cloud Computing	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
	On successful completion of the course, the student will be able
To understand the concepts of Cloud Computing, its architecture as well as know about cloud platforms	to:
	CO1:- . Understand the concept of virtualization and how this has
F	enabled the development of Cloud Computing
	CO2:-Know the fundamentals of cloud, cloud Architectures and
	types of services in cloud
	CO3:-Understand scaling, cloud security and disaster
	management
	CO4:-Design different Applications in cloud
	CO5:- Explore some important cloud computing driven
	commercial systems

UNIT-I:Introduction to Cloud:[CO1]

Cloud Computing at a Glance, The Vision of Cloud Computing, Defining a Cloud, Cloud Computing Reference Model. Characteristics and Benefits, Challenges Ahead, Historical Developments. Virtualization: Introduction, Characteristics of Virtualized Environment, Taxonomy of Virtualization Techniques, Virtualization and Cloud computing, Pros and Cons of Virtualization[8 hrs]

UNIT-II: Cloud Computing Architecture:[CO2]

Introduction, Cloud Reference Model, Architecture, Infrastructure / Hardware as a Service, Platform as a Service, Software as a Service, Types of Clouds, Public Clouds, Private Clouds, Hybrid Clouds, Community Clouds, Economics of the Cloud, Open Challenges, Cloud Interoperability and Standards, Scalability and Fault Tolerance.[7hrs]

UNIT-III:Defining the Clouds for Enterprise:[CO3]

Storage as a service, Database as a service, Process as a service, Information as a service, Integration as a service and Testing as a service. Scaling a cloud infrastructure - Capacity Planning, Cloud Scale. Disaster Recovery: Disaster Recovery Planning, Disasters in the Cloud, Disaster Management.[7 hrs]

UNIT-IV:Aneka: Cloud Application Platform Framework:[CO4]

Cloud Application Platform Framework Overview, Anatomy of the Aneka Container, From the Ground Up: Platform Abstraction Layer, Fabric Services, Foundation Services, Application Services, Building Aneka Clouds, Infrastructure Organization, Logical Organization, Private Cloud Deployment Mode, Public Cloud Deployment Mode, Hybrid Cloud Deployment Mode[7 hrs]

UNIT-V:Cloud Applications: [CO5]

Scientific Applications – Health care, Geoscience and Biology. Business and Consumer Applications- CRM and ERP, Social Networking, Media Applications and Multiplayer Online Gaming. Cloud Platforms in Industry: Amazon Web Services- Compute Services, Storage Services, Communication Services and Additional Services. [7hrs]

S.		Title	Authors		Edition	Publisher	
No.							
1	Mastering	Cloud Computing	Rajkumar Bu	yya,	-	Tata McGraw Hill	
	_		Christian Vecc	hiola,			
			S.ThamaraiS	elvi			
2	Cloud Application Architectures George Reese First		First	O' Reilly Publications			
			October2020]	1.00	Applicable for	
Cha	irman (AC)	Chairman (BoS)	Date of Release	Version		AY 2020-21 Onwards	

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261302	Cloud Computing	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

S. No.	Title	Authors	Edition	Publisher
1	Cloud Computing and SOA Convergence in Your Enterprise A Step-by-Step Guide	David S. Linthicum		Pearson Publications
2	Cloud Computing	Dr. Kumar Saurabh	Second	Wiley India

		October2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261303	Data Science	L =0	T = 0	P = 4	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3HOURS

Course Objectives	Course Outcomes
 To make students understand the fundamentals of data science To introduce python-based programming toolkit for developing basic models To make student understand mathematics behind data analysis To impart fundamentals of machine learning algorithms To design and develop DS models for real time applications 	 Students should be familiar with data science tools Students should be able to build a data science model using DS concept Student should be able to visualize data and understand the data semantics. Build data science applications using Python based toolkits.
UNIT-I Data science in a big data world: :[(CO1]

Why Data Science, Benefits and uses of data science; Facets of data.1.2 The data science process: Setting up goal, retrieving data, data preparation, data exploration, data modeling, Presentation and automation. **[7 hrs]**

UNIT-II Introduction to Programming: CO2]

Sequence data: string, list, dictionary, array and tuple. Tools for Data Science 2.1 Toolkits using Python: Matplotlib, NumPy, Scikit-learn, NLTK 2.2 Visualizing Data: Bar Charts, Line Charts, Scatter plots 2.3 Working with data: Reading Files, Scraping the Web, Using APIs (Example: Using the Twitter APIs), Cleaning and Munging, Manipulating Data, Rescaling, Dimensionality Reduction [7 hrs]

UNIT-III Mathematical Foundations: :[CO3]

Mathematical Foundations 3.1 Linear Algebra: Vectors, Matrices, 3.2 Statistics: Describing a Single Set of Data, Correlation, Simpson's Paradox, Correlation and Causation 3.3 Probability: Dependence and Independence, Conditional Probability, Bayes's Theorem, Random Variables, Continuous Distributions, The Normal Distribution, The Central Limit Theorem 3.4 Hypothesis and Inference: Statistical Hypothesis Testing, Confidence Intervals, P-hacking, Bayesian Inference . **[7 hrs]**

UNIT-IV Machine Learning : :[CO4]

Overview of Machine learning concepts – Over fitting and train/test splits, Types of Machine learning – Supervised, Unsupervised, Reinforced learning, Introduction to Bayes Theorem, Linear Regression- model assumptions, Classification and Regression algorithms- Naïve Bayes, K-Nearest Neighbors, logistic regression, support vector machines (SVM), decision trees, and random forest, Classification Errors. **[7 hrs]**

UNIT-V Application of Data Science: :[CO5]

Complete development of an application using data science techniques like Weather forecasting, Stock market prediction, Object recognition, Real Time Sentiment Analysis.: Exploratory data analysis, data visualization on data set, Prediction, analysis and accuracy of the system. **[7 hrs]**

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261303	Data Science	L =0	T = 0	P = 4	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3HOURS

Text Books:

S.	Title	Authors	Edition	Publisher
No.				
1	Data Science from Scratch: First	Joel Grus	-	O'Reilly Media
	Principles with Python			
2	Introducing Data Science	Davy Cielen, Arno,		Manning
		D,B Meysmen,		
		Mohamed Ali		
3	Hands-On Machine Learning	Aurélien Géron,	First	O'Reilly Media
	with Scikit-Learn and Tensor			
	Flow: Concepts, Tools, and			
	Techniques to Build Intelligent			
	Systems.			

S. No.	Title Authors		Edition	Publisher	
1	Data Sciences	Jain V.K.	First	Khanna Publishing House, Delhi.	
2.	Machine Learning	Jeeva Jose	First	Khanna Publishing House, Delhi.	

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261391	Data Science Lab using Python	L =0	T = 0	P = 4	Credits = 2
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	75	-	25	100	-

Course Objectives	Course Outcomes
 To make students familiar with python tools for data science To read data files and visualizing data with tools Develop complete solution of a real time problem implementing classification and prediction models 	 Students will be familiar with python tools for data visualization Students will be able to design and develop a fundamental model for problems Students will learn Python/R environment for handling data
4. To make students familiar with python/R environment for data visualization	

LIST OF PRACTICALS:

- A. **Perquisite**: Basics of python Use of open source is encouraged for the implementation of the problems[Colab, jupyter,spyder environment]
- 1. Operations on sequence data: strings, list array dictionary in python
- 2. NumPy Array: creating array, numpy attributes, operations on numpy
- 3. Panda data frame: Reading data: txt, xlxs, csv files; indexing attributes of data, converting data types
- 4. Data visualization: Use of matplotlib; for scatter; histogram; bar plots Use of seaborn for bar scatter histogram and box plot; handling of missing values
- 5. Developing a complete model using following (using scikit library)
 - a. Classification: Use Naïve bayes, SVM
 - b. Prediction Models: linear and logistic regression
 - c. Clustering task: K-means clustering
 - d. One application for each and use data sets on cars, income ,flower
- 6. Analyze performance

B. Installing and understanding R programming environment. Use of R programming for performing

- a. Data preparation
- b. Data cleaning
- c. Data visualization

S.	Title	Authors	Edition	Publisher
No.				
1	Data Science from Scratch: First	Joel Grus,	-	O'Reilly Media
	Principles with Python			
2	R for Data Science	Garrett Grolemund,		O'Reilly Media
		HadelyWickhan		
3	NPTEL course python for data	MOOC	Third	
	science			

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261392	Android Lab	L =0	T = 0	P = 4	Credits = 2
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	75	-	25	100	-

Course Objectives	Course Outcomes
1. Create Android applications by using application	On successful completion of the course, the student will be able
life cycle, manifest, Intents, and external resources	to:
2. Create useful Android applications with compelling	CO1:Understand basics about mobile computing, including the
user interfaces by extending, and create custom	devices and applications.
layouts, Views and using Menus.	CO2: Develop mobile user interface through the Android platform
3. Create feature rich Android applications by using	using GUI tools.
advantage of Android's APIs for data storage,	CO3 :Comprehend the various components for interactive mobile
retrieval, user preferences, files, databases.	computing, user interface, graphics, multi-media, network and
4. Create location-based services and rich map-based	database in Android.
applications and use Android's communication APIs	CO4:Develop location aware and map enabled android
for telephony, network management, and internet	application and also which utilizes internet, telephony and other
resources.	network resources.

Module1-Create Android applications by using application life cycle, manifest, Intents, and external resources: [CO1]

- 1. Create an application that will display Text in the middle of the screen in he red color with white background.
- 2. Create a login page by using EditTextView, TextView and Button.
- 3. Android program to count the number of button click by user andDisplay the count value in TextView.
- 4. Android program to transfer the data from login page to welcome page.
- 5. Create an application to call specific phone number provided by user in the Edit Text control.

Module 2- Create useful Android applications with compelling user interfaces by extending, and create custom layouts, Views and using Menus: [CO2]

- 6. Create an application that will accept a number in EditTextcontrol, and display the same number of item in ListView control.
- 7. Create an application that will display a list with Image Controlassociated with each list item.
- 8. Create an application to add menu items to the list view.
 - a. Add New item menu
 - b. Delete and Update menu item
- 9. Create an application that display custom dialog box onbutton click.
- 10. Create an application that displays result of arithmetic calculations in the form of Toast Message.

Module 3- Create feature rich Android applications by using advantage of Android's APIs for data storage, retrieval, user preferences, files, databases: [CO3]

- 11. Create an application that will create database with table of User credential.
- 12. Create an application that perform student registration, save the registration information in SQLite Database.
- 13. Create an application that performs CRUD operations in SQLite database
- 14. Create an application that display one Activity on the basis of specific time interval using Handler.
- 15. Create an application that display downloading progress through Asyn Task and display the notification on download completion.

Module-4 Create location-based services and rich map-based applications and use of Android's

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261392	Android Lab	L =0	T = 0	P = 4	Credits = 2
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	75	-	25	100	-

communication APIs for telephony, network management, and internet resources. [CO4]

- 16. Create an application that display longitude and latitudes by using Location Manager.
- 17. Create an application with Google map integration.
- 18. Create an application that capture image from mobile camera and store it in External Storage.
- 19. Create an application that will check the status of Internet connectivity features and calculate data transfer rate of phone.
- 20. Create an application that will play a media file from the memory card.

Text Books:

S.	Title	Authors	Edition	Publisher
No.				
1.	Professional Android TM	Retro Meier	Fourth	Wrox Publication
	Application Development			
2.	Hello Android (Pragmatic Programmers) : Introducing Google's Mobile Development Platform	Ed Burnette	Third	O'Reilly
3.	Beginning Android 4 Application Development	Wei-Meng Lee		Wrox Publication

S. No.	Title	Authors	Edition	Publisher
1.	Sams Teach Yourself: Android Application Development in 24 Hours	Carmen Delessio, Lauren Darcey, Shane Conder	Fourth	Sams Publisher
2.	Android Programming Tutorials	Mark L. Murphy	Third	CommonsWare

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261393	Minor Project	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 2
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	75	-	20	100	-

Course Objectives	Course Outcomes
A mini-project should be done by the students based on concepts of JAVA. It may be primarily based on database concepts, object oriented concepts, etc.	Working on Mini project is to get used to the larger project, which will be handled in the 6th semester. The project work constitutes an important component of the MCA programme of CSVTU and it is to be carried out with due care and should be executed with seriousness by the students.

Guidelines:

1A student must find a suitable title within 2 weeks of the start of session.

2A Synopsis and presentation regarding the work to be done must be conducted after the first month 3Data Dictionary and ER diagram to be completed in the subsequent 2 weeks followed by DFD and Form design.

Practical manual format :

The evaluation of the mini-project will be based on the project reports submitted by the student as a presentation and a demonstration.

The format of the project Report :

- 1. Abstract
- 2. List of Tables
- 3. List of Figures
- 4. List of Abbreviations/Symbols
- 5. Project Development Process Model Used (Methodology) :

Project's Process Documentation

- 5.1 Object Oriented Analysis and Design (OOA & OOD)
 - 5.1.1 Initial Description of Problem
 - 5.1.2 Object Model
 - 5.1.2.1 Object Classes
 - 5.1.2.2 Data dictionary containing description of class attributes
 - (data members, and methods)
 - 5.1.2.3 Association between classes
 - 5.1.2.4 Simplifying objects classes using Inheritance
 - 5.1.2.5 Group classes into module
 - 5.1.2.6 Object Diagram
 - 5.1.3 Functional Model
 - 5.1.3.1 Identification of Input/output values
 - 5.1.3.2 DFD as needed to show functional dependencies
 - 5.1.3.3 Identification of constraints
- ✤ 5.2. CASE Tools used to design
- 5.3 Coding Language and Operating System (OS) used (Including explanation)
- ✤ 5.4 Detail Databases Design and Connectivity Procedure E-R Diagram Table

Relationship Diagram etc

- ✤ 5.5 Testing and Quality Measurement Criterion (T&Q)
- ✤ 5.6 Software Costing by using COCOMO Model
- ✤ 5.7 Maintenance Criteria
- ✤ 5.8 Developed Project Interfaces and Reports (i.e., I/O Interface)
- ✤ 5.9 Features of Project

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261393	Minor Project	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 2
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	75	-	20	100	-

- ✤ 5.10 Future Enhancement scope of the project
- 6. Summary and Conclusions
- 7. Reference/Bibliography
- 8. Short questions for each experiment :
 - What is the aim of the project?
 - Why the particular software is used?
 - What are the limitations and scope of improvement of your project?
 - Explain the source of data collection and its reliability?
 - What was the importance of analysis and design in your project?
- 9. List of equipment / machines / instruments / tools / software, if any :
 - The student must develop the project using JAVA.
 - Backend can be ORACLE/ ACCESS/

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261394	Report Writing	L =0	T = 0	P = 4	Credits = 2
Evolution Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	-			-	-

UNIT-I Introduction to Technical Writing:

How differs from other types of written communication Purpose Of technical writing, Correspondence: prewriting, writing and rewriting Objectives of Technical Writing. Audience Recognition: High-tech audience, Low tech audience, Lay audience, Multiple Audience

UNIT-II Correspondence:

Memos, Letters, E-mails, Its differentiation, types of letters, Document Design, Its importance, Electronic Communication: Internet, Intranet, extranet, Writing effective e-mail.

UNIT-III Summary:

Report Strategies, Effective style of technical report writing: Structures: content ,introduction, conclusions, references, etc., Presentation, Writing first draft, revising first draft, diagrams, graphs, tables, etc. report lay-out.

UNIT-IV Report Writing:

Criteria for report writing, Types of Report: Trip report, Progress report, lab report, Feasibility report, project report, incident report, etc. Case Studies.

UNIT-V Proposals & Presentation:

Title page, Cover letter, Table of Content, list of illustrations, summary, discussion, conclusion, references, glossary, appendix, Case Studies. Oral Presentation/Seminar.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Technical Writing - Process& Product	Sharon J. Gerson & Steven M. Gerso	-	Pearson Education.

S. No.	Title		Authors	Edition	Publisher
1	Communication Skills f Engineers	for	Sunita Mishra	-	Pearson Education
2.	Communication f engineering students	for	Davies J.W	-	Longman

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code Formal Language and Automata		L =0	T = 0	P = 4	Credits = 2
CA261341	Theory				
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
Course Objectives:	Course Outcomes:
1. To introduce concepts of automata theory.	1. The students will be able to understand the concepts of
2. To identify different formal language classes and	computational model
their relationships	2. The students will be able to convert among DFAs, NFAs.
3. To design grammars and recognizers for different	3. The students will be able to identify the grammars and
formal languages	languages based on Chomsky hierarchy.
4. To determine the decidability of computational	4. The students will be able to design FA, PDA, TM for the
problems	languages.
	5. The students will be able to know about decidability and
	complexity

UNIT- I:Introduction Finite automata:[CO1]

Alphabet, String and language, Finite state systems, finite automata with ε moves, Conversion of NDFA to DFA, Removal of ε transition from NDFA, Two way finite automata, finite automata with output, Mealy & Moore machines, Applications of finite automata, minimization of finite automata. .[7hrs]

UNIT- II: Regular Languages:[CO2]

Chomsky hierarchy, Regular Expression and Language, Properties of Regular languages, Pumping lemma for regular sets, Closure properties of regular sets, Decision algorithms for Regular sets, Myhill-Nerodetheorem. .[**7hrs**]

UNIT- III: Context Free grammars and languages:[CO3]

Context free grammars and their properties, derivation tree, simplifying CFG, ambiguity in CFG, ChomskyNormal form, Greibach Normal form, Pumping lemma for CFL, Closure properties of CFL. .[7hrs]

UNIT- IV: Pushdown automata and turning machine:[CO4]

Pushdown automata: Informal description, Definition, Determinism and Non determinism in PDA, Equivalence of PDA's and CFL's. Two way PDA, Concept of Linear Bounded Automata, context sensitive grammars and their equivalence, Turning machine construction, determinism and non-determinism in TM, Multi tape, multi-track TM. .[7hrs]

UNIT- V:Undecidability:[CO5]

Undecidability, Universal turning machine and an undecidable problem, recursive function theory, Recursively enumerable sets, recursive sets, partial recursive sets, Church's hypothesis, post correspondence problem, Russell's paradox. [7hrs]

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code Formal Language and Automata		L =0	T = 0	P = 4	Credits = 2
CA261341	Theory				
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

S.	Title	Authors	Edition	Publisher
No.				
1	Theory of Computer Science,	K.L.P. Mishra, N	-	PHI,New Delhi.
	Automata Languages &	Chandrashekharan,		
	computation			
2	. Introduction to Automata	John E		Narosa Publication house.
	Theory Language and	HopcraftandJeffary D		
	Computation,	Ullman,		

S. No.	Title	Authors	Edition	Publisher
1	Theory of Computations	Rajesh .K. Shukla	First	Cenage Learning
2.	Introduction to Formal Languages, Automata Theory and Computation	Kamala Krithivasan and Rama. R	First	Pearson.

		November 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261342	Neural Network and Fuzzy Logic	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
1 The main objective of this course is to provide the	CO1: Students will be able to understand Artificial Neural
student with the basic understanding of neural	Network concept with the help of Biological Neural Network
networks and fuzzy logic fundamentals,	CO2: Students will be able to implement algorithms to train ANN
2 Program the related algorithms and Design the	by using learning algorithms
required and related systems.	CO3: To student will be able to understand the various
3 To learn the various architectures of building an	architectures of building an ANN and its applications
ANN and its applications	.CO4: To student will be able to understand the advanced
4 To learn the advanced methods of representing	methods of representing information in ANN like self-organizing
information in ANN like self-organizing networks,	networks, associative and competitive learning
associative and competitive learning	CO5: Students will be able to test fuzzy set operations and binary
5 To learn the fundamentals of Crisp sets, Fuzzy sets	relations
and Fuzzy Relations.	

UNIT- I Introduction to Artificial Neural Networks: [CO1]

Elementary Neurophysiology Models of a Neuron, Neural Networks viewed as directed graphs, Feedback, from neurons to ANN, Artificial Intelligence and Neural Networks; Network Architectures, Single layered Feed forward Networks, Multi-layered Feed-forward Networks, Recurrent Networks, Topologies. . [7hrs]

UNIT- II Learning and Training: [CO2]

Activation and Synaptic, Dynamics, Hebbian, Memory based Competitive, Error Correction Learning Credit Assignment Problem: Supervised and Unsupervised learning Memory models, Stability and Convergence Recall and Adaptation. [7hrs]

UNIT- III A Survey of Neural Network Models:[CO3]

Single-layered Perceptron – least mean square algorithm, Multilayered Perceptrons – Back propagation Algorithm, XOR –Problem, The generalized Delta rule, BPN Applications, Adalines And Madalines Algorithm and applications..[7hrs]

UNIT-IV Applications::[CO4]

Talking Network and Phonetic typewriter : Speech Generation and Speech recognition, Neocognitron - Character Recognition and Handwritten Digit recognition, Pattern Recognition Applications..[7hrs]

UNIT-V: Neural Fuzzy Systems: [CO5]

Introduction to Fuzzy sets, operations, relations, Examples of Fuzzy logic, Defuzzy fication, Fuzzy Associative memories, Fuzziness in neural networks examples, Fuzzy Rules and Fuzzy Reasoning : Extension Principles and Fuzzy Relations, Fuzzy IF THEN Rules, Fuzzy Reasoning system development .[6hrs]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1.	Speech and Language Processing	Daniel Juraf sky & James H. Martin, LPE	Third	Pearson Education.
2.	Natural Language Understanding,	James Allen	Second	Pearson Education

S.No.	Title	Authors	Edition	Publisher
1.	Natural language processing in prolog	G.Gazder	Second	Benjamin/cunnings

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) HEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261343	Internet of Things	L = 3	T = 1	P = 0	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
1. To study the fundamentals about IoT	On successful completion of the course, the student will be
2. To study about IoT Access technologies	able to :
3.To study the design methodology and	CO1:Understand the basics of IoT
different IoT hardware platforms.	CO2 :Implement the state of the Architecture of an IoT
4. To study the basics of IoT Data Analytics and	CO3:Understand design methodology and hardware
supporting services.	platforms involved in IoT
5. To study about various IoT case studies and	CO4:Understand how to analyze and organize the data
industrial applications.	CO5: Compare IOT Applications in Industrial & realworld.

UNIT I INTRODUCTION TOIoT:[CO1]

Evolution of Internet of Things, Enabling Technologies, M2M Communication, IoT World Forum (IoTWF) standardized architecture, Simplified IoT Architecture, Core IoT Functional Stack, Fog, Edge and Cloud in IoT, Functional blocks of an IoT ecosystem, Sensors, Actuators, Smart Objects and Connecting Smart Objects. [7hrs]

UNIT II ELEMENTS OF IoT:[CO2]

IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.11ah and Lora WAN, Network Layer: IP versions, Constrained Nodes and Constrained Networks,6LoWPAN, Application Transport Methods: SCADA, Application Layer Protocols: CoAP and MQTT.[**7hrs**]

UNIT III IoT APPLICATION DESIGN & DEVELOPMENT:[CO3]

Design Methodology, Embedded computing logic, Microcontroller, System on Chips, IoT system building blocks IoT Platform overview: Overview of IoT supported Hardware platforms such as: Raspberry pi, Arduino Board details.[6hrs]

UNIT IV DATA ANALYTICS :[CO4]

Data Analytics: Introduction, Structured Versus Unstructured Data, Data in Motion versus Data at Rest, IoT Data Analytics Challenges, Data Acquiring, Organizing in IoT/M2M,

Supporting Services: Computing Using a Cloud Platform for IoT/M2M Applications/Services, Everything as a service and Cloud Service Models. **[7hrs]**

UNIT V CASE STUDIES/IoT APPLICATIONS:[CO5]

IoT applications in home, infrastructures, buildings, security, Industries, Home appliances, Agriculture, Healthcare, other IoT electronic equipment, Industry 4.0 concepts **[6hrs]**

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

SHRI SHANKARACHARYA TECHNICAL CAMPUS, BHILAI (An Autonomous Institute affiliated to CSVTU, Bhilai) CHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261343	Internet of Things	L = 3	T = 1	$\mathbf{P}=0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Text Books:

S.	Title	Authors	Edition	Publisher
No.				
1)	Ïnternet of Things, "A Hands on Approach"	Vijay Madisetti, ArshdeepBahga		University Press
2)	IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things.	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry		Cisco Press, 2017
3)	"The Internet of Things: Enabling Technologies, Platforms, and Use Cases"	Pethuru Raj and Anupama C. Raman	1st Edition	CRC Press

S. No.	Title	Authors	Edition	Publisher
1)	Internet of Things	Jeeva Jose		Khanna Publishing House, Delhi
2)	Designing the Internet of Things"	Adrian McEwen,HakimCassimally		Wiley
3)	Internet of Things: Architecture and Design	Raj Kamal		McGraw Hill
4)	Getting Started with the Internet of Things	CunoPfister		O Reilly Media

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261344	Analysis & Design Of Algorithms	L = 3	T = 1	$\mathbf{P}=0$	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
1 To learn how to analysis algorithm.	CO1: Students will be able to analysis algorithm.
2 To understand the dynamic programming & greedy	CO2: Students will be able to understand, dynamic programming
paradigm .	& greedy paradigm .
3 To learn divide and conquer & backtracking	CO3: To student will be able to divide and conquer &
paradigm.	backtracking paradigm.
4 Student will learn graph algorithm.	CO4: To student will be able to understand graph algorithm.
5 To learn NP-Complete problems.	CO5: Students will be able to understand NP-Complete problems.

UNIT-I INTRODUCTION & ANALYSIS: [CO2]

Analyzing algorithms, Algorithm types, Recurrence Equations, Growth function: Asymptotic notation, Standard notation & common functions, Recurrence relation, different methods of solution of recurrence equations with examples. **[7hrs]**

UNIT-II -DYNAMIC PROGRAMMING & GREEDY PARADIGM: [CO2]

The basic dynamic programming paradigm, Dynamic programming solution to the optimal matrix chain multiplication and the longest common subsequence problems, Top down recursive algorithms, Greedy Paradigm: The basic greedy strategy & computing minimum spanning trees, Algorithms of Kruskal and Prim, Union to Find Algorithm & their applications, Disjoint Set, The relationship in Dijkstra's and Prim's algorithms, Use of greedy strategy in algorithms for the Knapsack problem and Huffman trees...[7hrs]

UNIT- III DIVIDE AND CONQUER & BACKTRACKING PARADIGM:[CO3]

Introduction to Divide and Conquer paradigm, Quick and merge sorting techniques, Linear time selection algorithm, the basic divide and conquer algorithm for matrix multiplication, Backtracking & Recursive backtracking, Applications of backtracking paradigm. heaps and introduction to 2-3 trees, Algorithms for manipulating 2-3 trees, Representation of heaps using 2-3 trees, Red Black tree, Binary Search tree, heap sort, shell & bucket sort, Amortized Analysis. **7hrs**]

UNIT-IV GRAPH ALGORITHMS & STRING MATCHING ALGORITHMS:[CO4]

Representational issues in graphs, Depth first search & Breath first search on graphs, Computation of biconnected components and strongly connected components using DFS, Topological sorting of nodes of an acyclic graph & applications, Shortest Path Algorithms on Graphs: Bellman-Ford algorithm, Dijkstra's algorithm & Analysis of Dijkstra's algorithm using heaps, Floyd-Warshall's all pairs shortest path algorithm and its refinement for computing the transitive closure of a graph. The general string problem as a finite automata, Knuth Morris and Pratt algorithms, Linear time analysis of the KMP algorithm, The Boyer-Moore algorithm.[**7hrs**]

UNIT-V: NP-COMPLETE PROBLEMS: [CO5]

Solvable problems, Types of problems, The notion of a non deterministic algorithm and its basic relationship to backtracking. Polynomial time non deterministic algorithms for problems like satisfiability, clique problem, Hamiltonian path problems etc., The definition of NP-hardness and NP-completeness, The statement of Cook's theorem and a discussion of its implications, The notion of polynomial transformation and reductions, Reductions to show that the clique problem, vertex cover, subset sum and Hamiltonian cycle problems are NP-complete, Other models for computations.[6hrs]

S.No.	Title	Authors	Edition	Publisher
1.	Introduction to Algorithms	Cormen, Lelserson, Rivert	Second	РНІ

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code	Analysis & Design Of Algorithms	L = 3	T = 1	P = 0	Credits = 4
CA261344					
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

2. I undumentalis of rigorithms Sami & Horowitz Sugota.	2.	Fundamentals of Algorithms	Sahni & Horowitz	-	Galgotia.
---	----	----------------------------	------------------	---	-----------

S.No.	Title	Authors	Edition	Publisher
1.	The Design & Analysis of Computer Algorithms, Hopcroft	Aho – Ullman	-	AWL
2	Handbook of Algorithms & Data Structures	G.H.Gonnet		AWL

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261345	Parallel Computing	L = 3	T = 1	$\mathbf{P}=0$	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
Course Objectives	Course Outcomes
1 To learn how to design parallel programs and how to	CO1: Students will be able to understand reason about ways to
evaluate their execution .	parallelize a problem.
2 To understand the characteristics, the benefits and the	CO2: Students will be able to understand, appreciate and apply
limitations of parallel systems and distributed	parallel and distributed algorithms in problem solving.
infrastructures	CO3: To student will be able to understand the evolution of high
3 Build experience with interdisciplinary teamwork.	performance computing (HPC) with respect to laws and the
4 To learn the Multiprocessor Architecture.	contemporary notion that involves mobility for data, hardware
5 To learn Algorithms on Array processors.	devices and software
	CO4: To student will be able to understand Multiprocessor
	Architecture.
	CO5: Students will be able to understand Algorithms on Array
	processors.

UNIT- I Introduction to parallel processing: [CO1]

Trends towards parallel processing; Parallelism in Uniprocessor systems: Basic Uniprocessor Architecture, Parallel Processingmechanisms, Multiprogramming and Time Sharing; Parallel Computer Structures: Pipeline computers, Array computers, Multiprocessor systems, Performance of Parallel Computers; Architectural classification schemes; Parallel processing applications. **[7hrs]**

UNIT- Principles of Pipelining and Vector Processing: [CO2]

Principles of Linear Pipelining, Classification of Pipelined processors, General pipelines & Reservation tables, Instruction and Arithmetic Pipelines: Design examples and principles of design ,Vector Processing: characteristics, Multiple Vector Task Dispatching, Pipelined Vector Processing methods. Architecture of Cray-I. [7hrs]

UNIT- III Structure of Array Processors:[CO3]

SIMD Array Processors: Organizations, Masking and Data Routing Mechanisms; SIMD Interconnection Networks: Static, Dynamic, Mesh-Connected, Cube Interconnection Networks, Shuffle Exchange, Omega Networks; Performance Enhancement methods; Associative Array processing: Associative Memory Organization, Associative Processors...[7hrs]

UNIT-IV Multiprocessor Architecture: Functional Structures:[CO4]

Loosely Coupled and Tightly coupled multiprocessors; Interconnection Networks for multiprocessors: Crossbar Switch and multiport memories, Multistage Networks for multiprocessors; Exploiting Concurrency for multiprocessors, Parallel Memory Organizations: High order & Low order interleaved memory; Multiprocessor Scheduling strategies, Interprocess communication mechanisms: Process Synchronization Mechanisms, Synchronization with Semaphores, Conditional critical section & monitors.[7hrs]

UNIT-V: Algorithms on Array processors; [CO5]

Parallel Algorithms on Array Processors- SIMD Matrix Multiplication, Parallel Sorting on Array Processors, SIMD Fast Fourier Transform, Parallel Algorithms of Multiprocessors- Classification of Parallel Algorithms, Synchronized Parallel Algorithms, Asynchronous Parallel Algorithms, Performance of Parallel Algorithms.[6hrs]

S.No.	Title	Authors	Edition	Publisher
1.	Computer Architecture & parallel Processing	Kai Hwang & A. Briggs	Third	McGraw Hill)
		0 1 0000	1.00	1. 11 0

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

S	Subject Code	Parallel C	omputing	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
	CA261345						
Evaluation Scheme ES		SE	СТ	ТА	Total	ESE Duration	
Evaluation Scheme		100		20	20	140	3 Hours
2. Designing Efficient Algorithms for Parallel Computers,		James Allen		Second	McG	raw Hill)	

S.No.	Title	Authors	Edition	Publisher
1.	AdvancedComputerArchitecture:parallelism,Scalability, Programmability	Kai Hwang	Second	ТМН
2	Computer Organization & Programming	Gear		ТМН
3	Parallel Processing for Supercomputers & Artificial Intelligence	Hwang & Degroo		

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261346	Natural Language Processing	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
1. To introduce the fundamental techniques of natural	CO1: The students will be able to understand concepts
language processing.	fundamental techniques of natural language processing
2. To develop an understanding of the limits of those	CO2: The students will be able to understand of the limits of those
techniques.	techniques.
3. To understand Current research issues, and to	CO3:The students will be able to understand Current research
evaluate some current and potential applications.	issues, and to evaluate some current and potential applications.
4. To develop an understanding of Strategies for	.CO4:The students will be able to understand Strategies for
Semantic Interpretation	Semantic Interpretation
5. To understand Natural language generation and	CO5:The students will be able to understand Natural language
translation	generation and translation

UNIT-I: Grammars and Parsing: : [CO1]

Grammar and sentence structure, good grammar, top-down and bottom-up chart parser, transition network grammars, finite state models and morphological processing, grammar and logic programming. **.** [7hrs]

UNIT-II: Features and unification: [CO2]

Human preferences in parsing, encoding uncertainty: shift- Reduce Parsers, A deterministic Parser, Techniques for efficient encoding of ambiguity, semantics and logical form, word senses and ambiguity, partial parsing, feature stems and augmented grammars, some basic feature systems for English, morphological analysis and the lexicon, parsing with features, augmented transition networks, definite clause grammars, generalized feature systems and unification grammars. **[7hrs]**

UNIT-III: Linking syntax and semantics:[CO3]

Semantics and logical form, word senses and ambiguity, the basic logical form language, encoding ambiguity in the logical form, verbs and states in logical form, thematic roles speech acts and embedded sentences, defining semantic structure: Model theory, semantic interpretation and compositionality, a simple grammar and lexicon with semantic interpretation, prepositional phrases and verb phrases, lexicalized semantic interpretation and semantic roles. Semantics interpretation using feature unification, generating sentences from logical form. .[**7hrs**]

UNIT-IV: Strategies for Semantic Interpretation:[CO4]

Selection restrictions, semantic filtering using selection restrictions, semantic networks statistical

word sense disambiguation, statistical semantic preferences, combining approaches to disambiguation grammatical relations, semantic grammars template matching, semantically driven parsing techniques, scooping phenomena, descriptions and scooping, scooping with parsing, , co-reference and binding constraints, adjective phrases, relational nouns and nominalizations. [7hrs]

UNIT-V: Natural language generation and translation:: [CO5]

Introduction to language generation, architecture for generation, surface realization, systemic grammar, functional unification grammar discourse planning, text schemata, theorical relations micro planning, lexical selection, evolution generation stems, generating speech, language similarities and differences the transfer metaphor, syntactic transformations, lexical transfer, the interlingua idea, direct translation, statistical techniques, quantifying fluency, quantifying faithfulness, usability and system development .[**6hrs**]

S.No.	Title		Authors		Edition	Publisher	
1	Speech an	d Language	Daniel Juraf sk	y &	Third	Pearson Education	
1.	Processing		James H. Marti	tin, LPE		Tearson Education.	
2.	Natural La	anguage	James Allen	James Allen		Pearson Education	
			October 2020	1	.00	Applicable for]
Chair	man (AC)	Chairman (BoS)	Date of Release	Ve	ersion	AY 2020-21 Onwards	

SHRI SHANKARACHARYA TECHNICAL CAMPUS, BHILAI (An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code	Natural Language Processing	L = 3	T = 1	P = 0	Credits = 4
CA261346					
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Understanding				
onderstanding,	Ur	nderstanding,		

S.No.	Title	Authors	Edition	Publisher
1.	Natural language processing in prolog	G.Gazder	Second	Benjamin/cunnings

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261347	Mobile Computing	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes				
1. The course aims to impart the concepts of wireless	CO1: Students will learn wireless technologies, tools and				
communication techniques.	frameworks which will help them to understand the mobile and				
2. Provide extension to communications fundamentals	the other wireless communications				
acquired.	CO2: Students will be understands architecture of mobile system				
3. Helps to understand basics of mobile environment	CO3: Students will develop understanding TCP over mobile				
and the technology in the various wireless	network.				
communications	CO4: Students will have understanding of architecture.				

UNIT-I: Introduction to Wireless Technology : [CO1]

Mobile and wireless communications, Applications, history, market vision, overview Frequency of Radio Transmission, Signal Antennas, Signal Propagation, Multiplexing, Modulation, Spread Spectrum, Error Detection: Parity Check, CRC. Block Error Correction Code: BHC Code, Reed- Solomon Code. [7hrs]

UNIT-II :Wireless Communication:[CO2]

Cellular systems: CDMA, FDMA, TDMA, CSDMA and comparison between them, Generations of Cellular Networks 1G, 2G, 2.5G, 3G and 4G. [7hrs]

UNIT-III :Wireless Lan::[CO3]

IEEE 802.11, WiFi, IEEE 802.16 Bluetooth: Packet Format and architecture, WIMAX: Standards, Architecture and Services..[**7hrs**]

UNIT-IV: Mobile Communication Systems:[CO4]

GSM- Mobile services, System architecture, Radio interface, Protocols & Localization and calling, Handover & Security. DECT: System architecture, Protocol architecture. TETRA, UMTS: UMTS system architecture. Mobile Network Layer: Mobile IP – Dynamic Host Configuration Protocol, Mobile Ad Hoc Routing Protocols– Multicast routing .[7hrs]

UNIT-V: Mobile Transport Layer: [CO5]

TCP over Wireless Networks – Indirect TCP – Snooping TCP – Mobile TCP – Fast Retransmit / Fast Recovery Transmission/Timeout Freezing-Selective Retransmission – Transaction Oriented TCP , TCP over 2.5 / 3G wireless Networks.

Application Layer: Wireless application protocol: Architecture, Wireless datagram protocol, Wireless transport layer security, Wireless transaction protocol, Wireless session protocol, Wireless application environment, WML – WML Scripts – WTA - iMode- SyncML..[6hrs]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1.	Mobile Communications	Jochen Schiller	Third	Pearson Education.
2.	Wireless Communications and Networks	William Stallings	Second	Pearson Education

S.No.	Title	Authors	Edition	Publisher
1.	Wireless network evolution: 2G to 3G	Vijay Garg	-	Prentice Hall
2.	Wireless Communication and Networks: 3G and Beyond	MISRA	-	McGraw Hil
3.	Principles of mobile computing and mobile communications	Melizza Othman	-	CR Cpress

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261348	Compiler Design	L = 3	T = 1	$\mathbf{P}=0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
 To introduce various phases of compiler design. To introduce the major concept areas of language translation and compiler design To develop an awareness of the function and complexity of modern compilers. To introduce code optimization techniques. 	 CO1: Students will have a concrete view on the theoretical and practical aspects of compiler design CO2 Students will be able to apply ideas and techniques discussed to various software design CO3 Students will be able to understand the complexity of compiler. CO4 Students will be able to understand the working of runtime environment.

UNIT-I Introduction : [CO1]

Introduction to Compiler, single and multi-pass compilers, Translators, Phases of Compilers, Compiler writing tools, Bootstrapping, Finite Automata and Lexical Analysis: Role of Lexical Analyzer, Specification of tokens, Recognition of tokens, Regular expression, Finite automata, from regular expression to finite automata, transition diagrams, Implementation of lexical analyzer, Tool for lexical analyzer–LEX, Error reporting. [7hrs]

UNIT-II : Syntax Analysis and Parsing Techniques:[CO2]

Context free grammars, Bottom-up parsing and top down parsing, Top down Parsing: elimi nation of left recursion, recursive descent parsing, Predictive Parsing; Bottom Up Parsing: Operator precedence parsing, LR parsers, Construction of SLR, canonical LR and LALR parsing tables, Construction of SLR parse tables for ambiguous grammar. [7hrs]

UNIT-III : Syntax Directed Translation & Intermediate code generation:[CO3]

Synthesized and inherited attributes, dependency graph, Construction of syntax trees, bottom up and top down evaluation of attributes, Sattributed and L-attributed definitions. Postfix notation; Three address code, quadruples, triples and indirect triples, Translation of assignment statements, control flow, Boolean expressions. **7hrs**]

UNIT-IV: Runtime Environment: [CO4]

Storage organization, activation tree, activation record, allocation strategies: stack and heap, symbol table management, dynamic storage allocation: implicit and explicit. **[7hrs]**

UNIT-V: Code Optimization & Code Generation:: [CO5]

Basic blocks and flow graphs, Optimization of basic blocks, Loop optimization, Loop invariant computations. Issues in the design of Code generator, simple Code generator...[6hrs]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1.	Principles, Techniques and Tools	Alfred V.Aho, Ravi Sethi and J.D. Ullman,	Third	AddisonWesley
2.	PrinciplesofCompilerDesign	AlfredV.AhoandJ.D.Ullman	-	NarosaPublication

S.No.	Title	Authors	Edition	Publisher
1.	Compiler design in C	A.C. Holub	-	Prentice Hallof India.
2.	Compiler construction (Theory and Practice)	A. Barret William and M. Bates	-	Galgotia Publication
3.	Compiler Design	Kakde	-	Galgotia Publication.

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261349	Software Project Management	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4
Evoluction Schome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
1. Define and highlight importance of software project	CO1: Students will be able to develop a project management plan
management	(PMP).
2. Describe the software project management activities	CO2: Students will be able to track project execution through
3. Train software project managers and other	collecting artifacts and metrics according to procedures described
individuals involved in software project planning and	in PMP.
tracking and oversight in the implementation of the	CO3: The students will be able to manage project.
software project management process.	CO4: The students will be able to understand Strategies for quality
4. To develop an understanding of quality planning.	planning.
5.To understand Risk management.	CO5: The students will be able to understand Risk management.

UNIT-I: Software Management Renaissance : [CO1]

Conventional Software Management, Evolution of Software Economics, Improving Software Economics, The Old Way and the New Way.[7hrs]

UNIT-II: Software Management Process Framework: [CO2]

Life – cycle phases, Artifacts of the process, Model based software architecture, Workflows of the process, checkpoints of the Process. **[7hrs]**

UNIT-III: Software Management Discipline:[CO3]

Iterative process planning, Project control and process instrumentation, tailoring the process. Looking forward: Modern project profiles, Next generation software economics, and modern process transitions.[**7hrs**]

UNIT-IV: Quality Planning:[CO4]

Quality Concepts, Procedural Approach to Quality Management, Quantitative Approaches to Quality Management, Quantitative Quality Management Planning, Setting the Quality Goal, Estimating Defects for Other Stages, Quality Process Planning, Defect Prevention Planning.[**7hrs**]

UNIT-V: Risk Management: [CO5]

Concept of Risk and Risk Management, Risk Assessment- Risk Identification, Risk Prioritization, Risk Control – Risk Management Planning, Risk Monitoring and Tracking

The Project Management Plan: Team Management, Team Structure, Communication, Team development, Customer Communication and Issue Resolution, The Structure of the Project Management Plan. .[6hrs]

Text Books:

S.No.	Title	Authors	Edition	Publisher
1.	Software Project Management	Walker Royce	Third	Pearson Education.
2.	Software Project Management in Practice,	JalotePankaj :	Second	Addison Wesley

S.No.	Title	Authors	Edition	Publisher
1.	Software Project Management	B. Hughes & M Cotterell	Second	ТМН

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH)

M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261350	Block Chain Technology	L = 3	T = 1	$\mathbf{P}=0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
	On successful completion of the course, the student will be able
To Understand how blockchain systems work and how	to:
cryptocurrencies use blockchain technology	CO1: Explain basic principles of Blockchain
51 65	CO2: Explain the working and types of blockchain
	CO3:- List and describe differences between proof-of-work and
	proof-of-stake consensus
	CO4: Understand Cryptocurrencies and security mechanisms
	CO5:- Understand Cryptocurrency regulations and application
	areas of Blockchain

UNIT-I:Basic concepts, Cryptography and Digital Signatures:[CO1]

Basics: Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof. **[8 hrs]**

UNIT-II:Blockchain:[CO2]

Blockchain: Introduction, Advantages over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public blockchain. [7hrs]

UNIT-III:Distributed Consensus:[CO3]

Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.. [7hrs]

UNIT-IV:Cryptocurrency :[CO4]

Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum -, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin [7hrs]

UNIT-V:Cryptocurrency Regulations and Blockchain Applications: [CO5]

ConstructionCryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects-Crypto currency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain.**[7hrs]**

S.	Title	Authors	Edition	Publisher
No.				
1	Bitcoin and Cryptocurrency	Arvind Narayanan,	-	Princeton University Press
	Technologies: A Comprehensive	Joseph Bonneau,		
	Introduction	Edward Felten,		
		Andrew Miller and		
		Steven Goldfeder		

		October2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

(An Autonomous Institute affiliated to CSVTU, Bhilai) SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH)

M.C.A (Master of Computer Applications) Third Semester

Subject Code CA261350	Block Chain Technology	L = 3	T = 1	$\mathbf{P}=0$	Credits = 4
Evaluation Sahama	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

S. No.	Title	Authors	Edition	Publisher
1	Mastering Bitcoin: Unlocking Digital Cryptocurrencies	Andreas Antonopoulos, Andreas M. Antonopoulos	Second	O' Reilly Publications
2	An Introduction to Database Concepts	Desai B	Fourth	Galgotia Publications

		October2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards